An attack on our knowledge-gaps about:

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

Yuem Park

Advisor: Nicholas Swanson-Hysell

Department of Earth and Planetary Science University of California, Berkeley Exit seminar 3 September 2020

Mt. Sumbing, Central Java, Indonesia, 2016

EARTH'S STABLE CLIMATE STATES

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

EARTH'S STABLE CLIMATE STATES

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOLOGIC CARBON CYCLE

carbonate precipitation

Ca/Mg silicate

silicate weathering:

 $(Ca/Mg)SiO_3 + 2CO_2 + H_2O \longrightarrow (Ca/Mg)^{2+} + 2HCO_3^- + SiO_2$

carbonate precipitation:

 $(Ca/Mg)^{2+} + 2HCO_3^- \longrightarrow (Ca/Mg)CO_3 + CO_2 + H_2O$ *Ca/Mg carbonate*

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOLOGIC CARBON CYCLE

one mole of CO₂ removed for every mole of Ca+Mg liberated

silicate weathering:

 $(Ca/Mg)SiO_3 + 2CO_2 + H_2O \longrightarrow (Ca/Mg)^{2+} + 2HCO_3^- + SiO_2$

carbonate precipitation:

 $(Ca/Mg)^{2+} + 2HCO_3^- \longrightarrow (Ca/Mg)CO_3 + CO_2 + H_2O$

net reaction: $(Ca/Mg)SiO_3 + CO_2 \longrightarrow (Ca/Mg)CO_3 + SiO_2$

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOLOGIC CARBON CYCLE

silicate weathering feedback:

- silicate weathering flux in one place (output > input)
- pCO_2 (amount of CO_2 in the atmosphere)
- temperature and precipitation
- silicate weathering flux elsewhere (output = input)

— *p*CO₂ stabilized at lower values

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOLOGIC CARBON CYCLE

silicate weathering feedback:

- silicate weathering flux elsewhere (output = input)

— *p*CO₂ stabilized at lower values

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

WEATHERABILITY

What affects planetary weatherability?

1. location of rocks

• the tropics have the highest temperatures and runoff

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

WEATHERABILITY

2. Ca+Mg concentration

• (ultra)mafic rocks from the mantle have the most Ca+Mg

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

WEATHERABILITY

2. Ca+Mg concentration

• (ultra)mafic rocks from the mantle have the most Ca+Mg

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

3. reactivity

(ultra)mafic rocks from the mantle are the most reactive •

less stable/

more reactive

WEATHERABILITY

What affects planetary weatherability?

2. Ca+Mg concentration

(ultra)mafic rocks from the mantle have the most Ca+Mg

 $(Ca/Mg)SiO_3 + CO_2 \longrightarrow (Ca/Mg)CO_3 + SiO_2$

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

3. reactivity

• (ultra)mafic rocks from the mantle are the most reactive

2+3. lithology

• (ultra)mafic rocks

WEATHERABILITY

What affects planetary weatherability?

4. uplift rate + topography

• convergent regions have the highest uplift rates and steepest topography

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

West (2012)

WEATHERABILITY

What affects planetary weatherability?

4. uplift rate + topography

• convergent regions have the highest uplift rates and steepest topography

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

West (2012)

slow erosion

fast erosion

WEATHERABILITY

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

1. location of rocks

• the tropics have the highest temperatures and runoff

2. Ca+Mg concentration

• (ultra)mafic rocks from the mantle have the most Ca+Mg

3. reactivity

• (ultra)mafic rocks from the mantle are the most reactive

4. uplift rate + topography

• convergent regions have the highest uplift rates and steepest topography

What geologic environment brings together these 4 factors?

large igneous province eruption in the tropics

island arc exhumation in the tropics

WEATHERABILITY

large igneous provinces

erupted onto stable continental interiors or subsiding basins during rifting

rings actors?

island arc exhumation in the tropics

Torsvik et al. (in press)

WEATHERABILITY

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

1. location of rocks

• the tropics have the highest temperatures and runoff

2. Ca+Mg concentration

• (ultra)mafic rocks from the mantle have the most Ca+Mg

3. reactivity

• (ultra)mafic rocks from the mantle are the most reactive

4. uplift rate + topography

• convergent regions have the highest uplift rates and steepest topography

What geologic environment brings together these 4 factors?

large igneous province eruption in the tropics

island arc exhumation in the tropics

WEATHERABILITY

What geologic environment brings

WEATHERABILITY

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

1. location of rocks

• the tropics have the highest temperatures and runoff

2. Ca+Mg concentration

• (ultra)mafic rocks from the mantle have the most Ca+Mg

3. reactivity

• (ultra)mafic rocks from the mantle are the most reactive

4. uplift rate + topography

• convergent regions have the highest uplift rates and steepest topography

What geologic environment brings together these 4 factors?

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

WEATHERABILITY

tropical island arc exhumation is important for setting Earth's long-term climate state

1. location of rocks

• the tropics have the highest temperatures and runoff

2. Ca+Mg concentration

(ultra)mafic rocks from the mantle have the most Ca+Mg •

3. reactivity

(ultra)mafic rocks from the mantle are the most reactive \bullet

4. uplift rate + topography

• convergent regions have the highest uplift rates and steepest topography

hypothesis:

island arc

exhumation in

the tropics

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

OUTLINE

tropical island arc exhumation is important for setting Earth's long-term climate state

- glacial climate?
- 3.

hypothesis:

PHANEROZOIC ARC-CONTINENT COLLISIONS

Phanerozoic

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

tropical island arc exhumation is important for setting Earth's long-term climate state

- glacial climate?
- for cooling over the past ~15 million years?

hypothesis:

1. If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with times of

2. Arc-continent collision is happening in the tropics today in the Southeast Asian islands: is this event responsible

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

PHANEROZOIC ARC-CONTINENT COLLISIONS

- glacial climate?
 - **1.** location of preserved remnants of arc-continent collisions
 - 2. age of exhumation of mafic lithologies
 - 3. paleogeographic model

1. If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with times of

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

PHANEROZOIC ARC-CONTINENT COLLISIONS

- **1. location of preserved remnants of arc-continent collisions**
- 2. age of exhumation of mafic lithologies
- 3. paleogeographic model
- 4. a record of Earth's climate state

PHANEROZOIC ARC-CONTINENT COLLISIONS

Phanerozoic

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

Macdonald, Swanson-Hysell, Park, Lisiecki, Jagoutz (2019)

non-glacial

well correlated

PHANEROZOIC ARC-CONTINENT COLLISIONS

Phanerozoic

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

Macdonald, Swanson-Hysell, Park, Lisiecki, Jagoutz (2019)

non-glacial

null hypothesis:

"glacial intervals do not correlate with the length of active sutures in the tropics"

reject at 99.998% confidence level

PHANEROZOIC ARC-CONTINENT COLLISIONS

Phanerozoic

weathering from 1 billion years ago to the present

Macdonald, Swanson-Hysell, Park, Lisiecki, Jagoutz (2019)

non-glacial

Do rapid uplift + steep topography matter?

weathering of large igneous provinces (LIPs) has also been proposed as an important driver of cooling

how well does tropical LIP area correlate with the ice extent record?

LIPs = voluminous basalts with high Ca+Mg erupted onto stable or subsiding crust

null hypothesis:

"glacial intervals do not correlate with the length of active sutures in the tropics"

reject at 99.998% confidence level

to the present

Torsvik et al. (in press)

to the present

Phanerozoic

1 billion years ago to the present

Phanerozoic

1 billion years ago to the present

null hypothesis: "glacial intervals do not correlate with the area of LIPs in the tropics"

cannot reject

SUMMARY

Phanerozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with changes in Earth's climate state?

tropical arc-continent collisions

correlates well with ice extent

- (ultra)mafic lithologies
- high runoff & temperature ●
- rapid uplift & steep topography
 - rapid supply of fresh minerals to weather
 - rapid erosional removal of shielding regolith

tropical large igneous provinces

correlates poorly with ice extent

- mafic lithologies
- high runoff & temperature
- no uplift & gentle topography
 - slow supply of fresh minerals to weather
 - slow erosional removal of shielding regolith

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

SOUTHEAST ASIAN ISLANDS AND NEOGENE COOLING

tropical island arc exhumation is important for setting Earth's long-term climate state

- glacial climate?

hypothesis:

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

NEOGENE COOLING

Park et al. (in press), data from Zachos et al. (2008)

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

NEOGENE COOLING

previous hypotheses for Neogene cooling:

- changes in ocean/atmosphere circulation
 - e.g. Haug and Tiedemann (1998), Shevenell (2004), Molnar and Cronin (2015)
- decrease in volcanic outgassing \bullet
 - e.g. Berner et al. (1983) ٠
- increase in organic carbon burial lacksquare
 - e.g. Galy et al. (2007) •
- uplift in the Himalayas
 - e.g. Raymo and Ruddiman (1992)

Park et al. (in press), data from Zachos et al. (2008)

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

NEOGENE COOLING

previous hypotheses for Neogene cooling:

- changes in ocean/atmosphere circulation
 - e.g. Haug and Tiedemann (1998), Shevenell (2004), Molnar and Cronin (2015)
- decrease in volcanic outgassing \bullet
 - e.g. Berner et al. (1983) ٠
- increase in organic carbon burial •
 - e.g. Galy et al. (2007) •
- uplift in the Himalayas \bullet
 - e.g. Raymo and Ruddiman (1992)

Park et al. (in press), data from Zachos et al. (2008)

the hypothesis we test:

Enhanced silicate weathering in the Southeast Asian islands was the primary driver for Neogene cooling.

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

SOUTHEAST ASIAN ISLANDS

Hall (2017)

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

SOUTHEAST ASIAN ISLANDS

based on geologic maps, stratigraphic data, and other paleoshoreline compilations

paleoshoreline compilation

Park et al. (in press)

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

SOUTHEAST ASIAN ISLANDS

Sunda

Park et al. (in press)

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

SOUTHEAST ASIAN ISLANDS

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOCLIM

GEOCLIM estimates changes in steady-state *p***CO**₂ **associated with** coupled changes in silicate weathering and climatology

adapted from Goddéris & Donnadieu (2017)

(finds the *p*CO₂ at which the sink equals the source)

*climate model: GFDL CM2.0 at pCO*² = 286, 572, 1144 *ppm* equilibrium climate sensitivity = 2.9°C

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOCLIM

degassing ->

source

DCO,

GEOCLIM estimates changes in steady-state *p***CO**₂ **associated with** coupled changes in silicate weathering and climatology

adapted from Goddéris & Donnadieu (2017)

(finds the *p*CO₂ at which the sink equals the source)

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOCLIM

GEOCLIM estimates changes in steady-state *p***CO**₂ **associated with** coupled changes in silicate weathering and climatology

adapted from Goddéris & Donnadieu (2017)

(finds the *p*CO₂ at which the sink equals the source)

*climate model: GFDL CM2.0 at pCO*² = 286, 572, 1144 *ppm* equilibrium climate sensitivity = 2.9°C

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOCLIM

Maffre et al. (2018), formulation based on Gabet & Mudd (2009) and West (2012)

DynSoil

a regolith production + weathering model

primary phases (x)

weathering was modeled to be a function of:

> temperature runoff topography

we introduce a dependence on lithology

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOCLIM

Park et al. (in press), simplified from the Global Lithologic Map (GLiM) of Hartmann and Moosdorf (2012)

m

lithology	Ca+Mg (mol/m³)	
felsic	1,521	mean of do
ntermediate	4,759	compiled in
mafic	10,317	EarthChem
carbonate	ignored	
etamorphics	???	dependent
sediments	???	degree of p

ata

on protolith composition and previous chemical depletion

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CALIBRATION

poorly constrained lithologies

metamorphic_{Ca+Mg} sediment_{Ca+Mg}

6 values

6 values

permute to get 93,600 unique combinations of these 6 parameters

poorly constrained model parameters (from West, 2012)				
k _d	k _w	σ	k _{rp}	
10 values	10 values	6 values	6 values	

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CALIBRATION

poorly constrained lithologies

sediment_{Ca+Mg} metamorphic_{Ca+Mg}

6 values

6 values

permute to get 93,600 unique combinations of these 6 parameters

5,381 "good" parameter combinations that result in chemical weathering maps that closely resemble that observed in the present day

poorly constrained model parameters (from West, 2012)				
k _d	k _w	σ	k _{rp}	
10 values	10 values	6 values	6 values	

Maffre et al. (2018)

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

TECTONIC BOUNDARY CONDITIONS

paleogeography elsewhere on Earth is not changed

for each of the 5,381 "good" parameter combinations, run the full GEOCLIM model and get an estimate for steady-state *p*CO₂

800

 Pleistocene
QUATERNARY

to the present

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

LEAD-UP TO THE STURTIAN SNOWBALL EARTH

tropical island arc exhumation is important for setting Earth's long-term climate state

- glacial climate?
- for cooling over the past ~15 million years?

hypothesis:

1. If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with times of

2. Arc-continent collision is happening in the tropics today in the Southeast Asian islands: is this event responsible

to the present

to the present

STREES PRINT ON

arc-proximal environment

- deposits ashes
 - can be dated to very high precision

arc-proximal environment

deposits ashes

STREAL BURGL

• can be dated to very high precision

warm & shallow marine environment

- deposits carbonates
 - records ocean chemistry

arc-proximal environment

deposits ashes

STREAL BURGL

• can be dated to very high precision

warm & shallow marine environment

- deposits carbonates
 - records ocean chemistry

arc-proximal environment

deposits ashes

STREAL BURGL

• can be dated to very high precision

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

TAMBIEN GROUP

The Tambien Group is the only sedimentary sequence identified so far that leads into the Sturtian glaciation and hosts both carbonates and ashes

allows us to produce a precisely time-calibrated record of ocean chemistry leading up to snowball glaciation

arc-proximal environment deposits ashes can be dated to very high precision

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

TAMBIEN GROUP

🕂 anticline axis

----- road

town

Contour interval = 50m

World Geodetic System 1984 EPSG: 4326

to the present

carbon isotopes - $\delta^{13}C$

identifying alteration in carbonate samples

thresholds strontium isotopes - 87Sr/86Sr

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

TAMBIEN GROUP

1.12 1.14 T39 420.2Z 1.17

U-Pb chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) on zircon

generating precise ages from ashes

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

TAMBIEN GROUP

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CHEMOSTRATIGRAPHY

ocean chemistry record derived from carbonates

> most precisely timecalibrated marine isotope record leading into the Sturtian Glaciation to date

age constraints
derived from ashes

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

STRONTIUM

weathering from

to the present

1 billion years ago

STRONTIUM

juvenile rocks (generally more mafic)

low ⁸⁷*Sr*/⁸⁶*Sr*

radiogenic rocks (generally more felsic)

high ⁸⁷Sr/⁸⁶Sr

carbonate rocks

variable ⁸⁷Sr/⁸⁶Sr

hydrothermal exchange

low ⁸⁷*Sr*/⁸⁶*Sr*

⁸⁷Sr/⁸⁶Sr of oceans is set by the relative proportion of globally averaged fluxes coming from each of these four sources

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

STRONTIUM

⁸⁷Sr/⁸⁶Sr of oceans is set by the relative proportion of globally averaged fluxes coming from each of these four sources

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

ocean chemistry record derived from carbonates

> most precisely timecalibrated marine isotope record leading into the Sturtian Glaciation to date

age constraints
derived from ashes

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

▲ more Sr from radiogenic rocks

STRONTIUM

to the present

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

STRONTIUM

more Sr from radiogenic rocks

falling ⁸⁷Sr/⁸⁶Sr starting ~780 Ma most likely driven by increased weathering of juvenile rocks

1 billion years ago

to the present

to the present

accretion events coincide with

tropical arc exhumation started cooling the planet ~780 Ma?

to the present

weathering from 1 billion years ago to the present

but there are serious limitations...

- paleolatitude is poorly constrained
- arc-accretion database is not well developed

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

large area of LIPs in the tropics, but no snowball glaciation

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

Park et al. (2020a)

on of the

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

weathering from 1 billion years ago to the present

- 1. low-latitude arc-accretion in the Arabian-Nubian Shield starts cooling the Earth ~780 Ma
- 2. Franklin LIP increases planetary albedo and further increases weatherability
- 3. Earth plunges into a snowball glaciation

tropical arc-accretion was required to "set the stage" for the Sturtian Snowball Earth

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CONCLUSIONS

Island arc exhumation in the tropics is important for setting Earth's climate state over the past 1 billion years.

- 1. Arc-continent collisions in the tropics correlate well with glacial intervals over the past 520 million years.
- 2. Arc-continent collision in the Southeast Asian islands can explain the majority of cooling over the past 15 million years.
- 3. Arabian-Nubian Shield arc accretion may have set the stage for the Sturtian Snowball Earth 717 million years ago.

Other potentially important mechanisms:

- volcanic degassing
- sulphide oxidation coupled to carbonate weathering
- organic carbon burial/weathering
- changes in weatherability due to other processes

But the evidence so far suggests that island arc exhumation in the tropics is one of the most important of these for setting Earth's *climate state.*

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

ACKNOWLEDGEMENTS

Faculty collaborators:

- Mulugeta Alene • Dan Condon • Seth Finnegan • Yves Goddéris • Bereket Haileab • Oli Jagoutz • Lorraine Lisiecki • Francis Macdonald • Adam Maloof • Blair Schoene • Daniel Stolper • Shihong Zhang **Other collaborators:** • Eliel Anttila • Hairuo Fu Mulubrhan Gebreslassie Scott MacLennan • Pierre Maffre • Tadele Tesema • Marissa Tremblay
- Hanbiao Xian

Swanson-Hysell group:

- Maggie Avery
- Lake Fairchild
- Blake Hodgin
- Taylor Kilian
- Sarah Slotznick
- Yiming Zhang

Ph.D. class:

- Alex Charn
- Isabel Fendley
- Jinsol Kim
- Tanis Leonhardi
- Nate Lindsey
- Alex Robson
- Allison Sharrar

Staff:

- Rachel Kowalik
- Margie Winn

All the other undergrad. students, grad. students, postdocs, staff, and faculty at UC Berkeley EPS!

Friends, frands, Yudith

My family

Nick Swanson-Hysell

EXTRA SLIDES

D

Figure 4. (Colour online) Indices for the evolution of the solid Earth degassing rate (normalized to the indices for the evolution of the solid Earth degassing rate (normalized to their present-day values)). See Table 2 for references.

Myrow et al. (2015)

f

DELETED SLIDES

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOLOGIC CARBON CYCLE

silicate weathering feedback:

weatherability

- silicate weathering flux in one place (output > inp
- pCO_2 (amount of CO_2 in the atmosphere)
- temperature and precipitation
- silicate weathering flux elsewhere (output = input,

— *p*CO₂ stabilized at lower values

weatherability = the sum of factors aside from climate itself that contributes to the overall global silicate weathering flux and associated CO₂ consumption

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

GEOLOGIC CARBON CYCLE

silicate weathering feedback:

weatherability

- silicate weathering flux in one place (output > input)
- pCO_2 (amount of CO_2 in the atmosphere)
- temperature and precipitation
- silicate weathering flux elsewhere (output = input)

— *p*CO₂ stabilized at lower values

carbon input and output fluxes do not permanently change

PHANEROZOIC ARC-CONTINENT COLLISIONS

Phanerozoic

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

1. location of preserved remnants of arc-continent collisions

Banda Arc, simplified from Charlton (1991)

PHANEROZOIC ARC-CONTINENT COLLISIONS

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

2. age of exhumation of (ultra)mafic lithologies

- collision complex includes lower Ca+Mg continental crust and overlying sediment
- constrain age of exhumation of mafic lithologies using **dates on ophiolitic detritus in syn-orogenic** sedimentary basins

North Slope stratigraphy, *Moore et al. (2015)*

PHANEROZOIC ARC-CONTINENT COLLISIONS

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

3. paleogeographic model

- mostly Torsvik and Cocks (2012)
- update Asia in the Paleozoic (Domeier, 2018)

• update Laurentia in the Ordovician (Swanson-Hysell and Macdonald, 2017)

Torsvik and Cocks (2012)

PHANEROZOIC ARC-CONTINENT COLLISIONS

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

PHANEROZOIC ARC-CONTINENT COLLISIONS

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

*pCO*₂ *compilation from Foster et al. (2017)*

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CALIBRATION

5,381 "good" parameter combinations that result in chemical weathering maps that closely resemble that observed in the present day

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CHEMOSTRATIGRAPHY

		-15 -10
NEOPROTEROZOIC	Cryogenian	Trezona anomaly
		735 Ma anomaly
		Bitter Springs stage
	Tonian	Chemostratigraphy Legend •••• Ethiopia this study Swanson-Hysell et al. (200 Miller et al. (2009) ••• Svalbard
		Halverson et al. (2007) Cox et al. (2016) A4A Australia Swanson-Hysell et al. (2016)
		►>> Scotland
		Sawaki et al. (2010) Billion Siberia Bartley et al. (2001) Kuznetsov et al. (2006) Cox et al. (2016)
		 ar≺a Canada Macdonald et al. (2010) Halverson et al. (2006) Halverson et al. (2007) Rooney et al. (2014) Jones et al. (2010) Asmerom et al. (1991) Cox et al. (2016)
OPROTEROZOIC		Bold et al. (2016)
	nian	Halverson et al. (2003) Halverson et al. (2003)
	Ste	+++ Greenland Cox et al. (2016)

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CHEMOSTRATIGRAPHY

		-15	-10				
Cryogenian	Trezona anomaly – Taishir excursion – Rasthof excursion –	→ → →					
	735 Ma anomaly	•	< eq				
	Bitter Springs stage	graph	ny Legend				
Tonian	Ethiopia this study Swanson-Hysell et al. (201 Miller et al. (2009) vvv Svalbard						
	Halver Cox et	rson et a al. (201	al. (2007) 6) ell et al. (201				
	Cox et ►►► Scotland	al. (201	6)				
	Sawak Biberia Bartley Kuzne Coviet	d et al. (y et al. (tsov et al. tal. (201	2010) 2001) al. (2006) 6)				
	 ≪ < Canada Macde Halver Roone Jones Asmer Cox et 	enald et rson et a rson et a et al. (2) rom et a tal. (201	al. (2010) al. (2006) al. (2007) (2014) 010) al. (1991) 6)				
	■■■ Mongolia Bold e Brasie	r al. (20 r et al. (16) 1996)				
tenian	• • Namibia Halver Halver	rson et a rson et a	al. (2005) al. (2007)				
-	♦♥♦ Greenland	d					

NEOPROTEROZOIC

MESOPROTEROZOIO

MacLennan et al. (2010) Swanson Hysel et al. (2015) Swanson-Hysel et al. (2015) Swanson-Hysell et al. (2015)

Phanerozoic

Cenozoic

Neoproterozoic

conclusions

acknowledgements

Planetary cooling, tectonics, and weathering from 1 billion years ago to the present

CHEMOSTRATIGRAPHY

	_	-15	-10	_		
		Trezona anomaly 🔶		-		
OTEROZOIC		Taishir excursion>				
	Cryogenian	Rasthof excursion —>		1		
		735 Ma anomaly				
		Bitter Springs stage		-1 -		
-		Chemostratigraphy	/ Leger	nd		
N	Tonian	••• Ethiopia this study Swanson-Hysell et al. (2015) Miller et al. (2009)				
		v v Svalbard Halverson et al. Cox et al. (2016	. (2007)			
		AAA Australia Swanson-Hysel Cox et al. (2016	et al . (2 (010)		
		►►► Scotland Sawaki et al. (20	010)			
		BE Siberia Bartley et al. (20 Kuznetsov et al Cox et al. (2016	Bartley et al. (2001) Kuznetsov et al. (2006) Cox et al. (2016)			
		 ≪ < Canada Macdonald et a Halverson et al. Halverson et al. Rooney et al. (2 Jones et al. (20) Asmerom et al. Cox et al. (2016) 	al. (2010) . (2006) . (2007) . (1907) . (1991) . (1991) .)			
OPROTEROZOIC		Bold et al. (2016 Bold et al. (2016 Brasier et al. (15	6) 196)			
	enian	 Namibia Halverson et al. 	. (2005) . (2007)			
	5	+++ Greenland Cox et al. (2016	i)			
MES						

 635.5 ± 1.2 U-P6 ID-TIMS Hoffmann ct al. (2004 636.4 ± 0.5 U-PU ID-TIMS Calver et al. (2013) 654.5 ± 3.8 U-Pb SHRIMP Zhang et al. (2003) 659.0 ± 4.5 Re-Os isochron Rooney et al. (2015) 662.4 ± 4.6 Re-Us isochron Rooney et al. (2014) 662.9 ± 4.3 U-Pb ID-TIMS Zhou et al. (2004) 663.0 ± 0.1 U-PB ID-TIMS Cox et al. (2018) 711.5 ± 0.3 U-PEID-TIMS Bowring et al. 12007 716.5 ± 0.2 U-Pb ID-TIMS Macdonald et al. (2010) 716.9 ± 0.4 U-P6 ID-TIMS Macdonald et al. (2018) 717.4 ± 0.1 U-Pb ID-TIMS Macdonald et al. (2010 717.7 ± 0.3 U Pb ID TIMS Macdonald et al. (2018) 717.8 ± 0.2 U-PhilD-TIMS Macdonald et al. (2018 718.1 ± 0.3 U PE ID TIMS Macdonald et al. (2018) 718.1 ± 0.2 U-Ph ID-TIMS Macdonald et al. (2018) 719.5 ± 0.3 U-Ph ID-TIMS Cox et al (2015 719.58 ± 0.56 U-Pb ID-TIMS MacLennan et al. (2018) 719.68 ± 0.46 U-PBID-TIMS MacLennan et al. (2018) 732.2 ± 3.9 Re-Os Isochron Booney et al. (2014) 735.25 ± 0.25 U-Pb ID-TIMS MacLennan et al. (2018) 739.9 ± 6.1 Re-Os isoc Strauss et al. (2014) 787.38±0.14 U-Pb ID-TIMS Swanson Hysel et al. (2015) 788.72 ± 0.24 U-PUID-TIMS Swanson-Hysel et al. (2015) 811.5 ± 0.3 U-Pb ID-TIMS Macdonald et al. (2010) 815.29 ± 0.32 U-PL ID-TIMS Swanson-Hysell et al. (2015)

most precisely timecalibrated marine isotope record leading into the **Sturtian Glaciation to date**

to the present

STRONTIUM

driving the falling ⁸⁷Sr/⁸⁶Sr using an increase in the requires unrealistic Ca and Mg fluxes and reservoirs

weathering from 1 billion years ago to the present

but there are serious limitations...

• paleolatitude is poorly constrained

where was

South China?

