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one mole of CO2 removed for every mole of Ca+Mg liberated

silicate weathering flux in one place (output > input)

pCO2 (amount of CO2 in the atmosphere)

temperature and precipitation

silicate weathering flux elsewhere (output = input)

pCO2 stabilized at lower values

weatherability

weatherability = the sum of factors 
aside from climate itself that contributes to 

the overall global silicate weathering flux 
and associated CO2 consumption

conclusions

pCO2 stabilized 
at lower values

Kump & Arthur (1997)

weatherability 
increased

CO2 input/output 
unchanged
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4. uplift rate + topography 
• convergent regions have the highest uplift rates and steepest topography



Phanerozoic

Cenozoic

Neoproterozoic

acknowledgements

introduction

Planetary cooling, 
tectonics, and 
weathering from 
1 billion years ago 
to the present

WEATHERABILITY

conclusions

4. uplift rate + topography 
• convergent regions have the highest uplift rates and steepest topography

2. Ca+Mg concentration 
• (ultra)mafic rocks from the mantle have the most Ca+Mg

1. location of rocks 
• the tropics have the highest temperatures and runoff

3. reactivity 
• (ultra)mafic rocks from the mantle are the most reactive

island arc 
exhumation in 

the tropics

large igneous 
province eruption 

in the tropics

What geologic 
environment brings 

together these 4 factors?



4. uplift rate + topography 
• convergent regions have the highest uplift rates and steepest topography

2. Ca+Mg concentration 
• (ultra)mafic rocks from the mantle have the most Ca+Mg

1. location of rocks 
• the tropics have the highest temperatures and runoff

3. reactivity 
• (ultra)mafic rocks from the mantle are the most reactive

Phanerozoic

Cenozoic

Neoproterozoic

acknowledgements

introduction

Planetary cooling, 
tectonics, and 
weathering from 
1 billion years ago 
to the present

WEATHERABILITY

conclusions

island arc 
exhumation in 

the tropics

large igneous 
province eruption 

in the tropics
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Torsvik et al. (in press)

large igneous 
provinces 

erupted onto 
stable continental 
interiors or 
subsiding basins 
during rifting
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tropical island arc exhumation is important for setting Earth’s long-term climate state

conclusions
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exhumation in 

the tropics

4. uplift rate + topography 
• convergent regions have the highest uplift rates and steepest topography

2. Ca+Mg concentration 
• (ultra)mafic rocks from the mantle have the most Ca+Mg

1. location of rocks 
• the tropics have the highest temperatures and runoff
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• (ultra)mafic rocks from the mantle are the most reactive
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1. If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with times of 
glacial climate? 

2. Arc-continent collision is happening in the tropics today in the Southeast Asian islands: is this event responsible 
for cooling over the past ~15 million years? 

3. Is tropical island arc exhumation also responsible for a “snowball” glaciation ~717 million years ago?
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hypothesis: 

tropical island arc exhumation is important for setting Earth’s long-term climate state
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conclusions

1. location of preserved remnants of arc-continent collisions

3. paleogeographic model

4. a record of Earth’s climate state

2. age of exhumation of mafic lithologies

Macdonald, Swanson-Hysell, Park, Lisiecki, Jagoutz (2019)

1. If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with times of 
glacial climate?
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1. location of preserved remnants of arc-continent collisions

3. paleogeographic model

4. a record of Earth’s climate state

2. age of exhumation of mafic lithologies

PHANEROZOIC ARC-CONTINENT COLLISIONS

conclusions

Macdonald, Swanson-Hysell, 
Park, Lisiecki, Jagoutz (2019)
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well correlated

Macdonald, Swanson-Hysell, Park, Lisiecki, Jagoutz (2019)
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null hypothesis: 
“glacial intervals do not correlate with the length of active sutures in the tropics” 

reject at 99.998% confidence level
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Do rapid uplift + steep topography matter? 

weathering of large igneous provinces (LIPs) has also been proposed as an important 
driver of cooling 

how well does tropical LIP area correlate with the ice extent record? 

LIPs = voluminous basalts with high Ca+Mg erupted onto stable or subsiding crust

null hypothesis: 
“glacial intervals do not correlate with the length of active sutures in the tropics” 

reject at 99.998% confidence level

PHANEROZOIC ARC-CONTINENT COLLISIONS

conclusions

Macdonald, Swanson-Hysell, Park, Lisiecki, Jagoutz (2019)
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LIPs remain at the 
surface after eruption
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parameterization 
of LIP erosion

PHANEROZOIC LARGE IGNEOUS PROVINCES

conclusions

Park et al. (2020b), 
parameterization based on Goddéris et al. (2017)

Park et al. (2020b), 
modified from Ernst and Youbi (2017)
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“bury” LIPs associated 
with rifting 

instantly remove 
50% of area

N(t) = 2t/t1/2
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of LIP erosion

PHANEROZOIC LARGE IGNEOUS PROVINCES

conclusions

Park et al. (2020b), 
modified from Ernst and Youbi (2017)

Park et al. (2020b), 
parameterization based on Goddéris et al. (2017)
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Kalkarindji

Kola-Dnieper CAMP

Afar

PHANEROZOIC LARGE IGNEOUS PROVINCES

conclusions

Park et al. (2020b)
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null hypothesis: 
“glacial intervals do not correlate with 

the area of LIPs in the tropics” 

cannot reject

Kalkarindji

Kola-Dnieper CAMP

Afar

PHANEROZOIC LARGE IGNEOUS PROVINCES

conclusions

Park et al. (2020b)
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If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with changes 
in Earth’s climate state?

tropical arc-continent collisions 

correlates well with ice extent 

• (ultra)mafic lithologies 
• high runoff & temperature 
• rapid uplift & steep topography 

• rapid supply of fresh minerals to 
weather 

• rapid erosional removal of shielding 
regolith

tropical large igneous provinces 

correlates poorly with ice extent 

• mafic lithologies 
• high runoff & temperature 
• no uplift & gentle topography 

• slow supply of fresh minerals to 
weather 

• slow erosional removal of shielding 
regolith

SUMMARY

conclusions
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SOUTHEAST ASIAN ISLANDS AND NEOGENE COOLING

conclusions

1. If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with times of 
glacial climate? 

2. Arc-continent collision is happening in the tropics today in the Southeast Asian islands: is this event responsible 
for cooling over the past ~15 million years? 

3. Is tropical island arc exhumation also responsible for a “snowball” glaciation ~717 million years ago?

1

2
3

hypothesis: 

tropical island arc exhumation is important for setting Earth’s long-term climate state
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Park et al. (in press), data from Zachos et al. (2008)

major Antarctic 
glaciers 

already established

conclusions
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previous hypotheses for Neogene cooling: 

• changes in ocean/atmosphere circulation 
• e.g. Haug and Tiedemann (1998), Shevenell (2004), Molnar and Cronin (2015) 

• decrease in volcanic outgassing 
• e.g. Berner et al. (1983) 

• increase in organic carbon burial 
• e.g. Galy et al. (2007) 

• uplift in the Himalayas 
• e.g. Raymo and Ruddiman (1992)

major Antarctic 
glaciers 

already established

conclusions

Park et al. (in press), data from Zachos et al. (2008)
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the hypothesis we test: 

Enhanced silicate weathering in 
the Southeast Asian islands 
was the primary driver 
for Neogene cooling.

previous hypotheses for Neogene cooling: 

• changes in ocean/atmosphere circulation 
• e.g. Haug and Tiedemann (1998), Shevenell (2004), Molnar and Cronin (2015) 

• decrease in volcanic outgassing 
• e.g. Berner et al. (1983) 

• increase in organic carbon burial 
• e.g. Galy et al. (2007) 

• uplift in the Himalayas 
• e.g. Raymo and Ruddiman (1992)

major Antarctic 
glaciers 

already established

conclusions

Park et al. (in press), data from Zachos et al. (2008)
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first-order 
correlation

Was the decrease in pCO2 

associated with emergence 
of the Southeast Asian 
islands enough to explain 
Neogene cooling?

conclusions

Park et al. (in press)
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source sink

(finds the pCO2 at which the sink equals the source)

adapted from Goddéris & Donnadieu (2017)
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equilibrium climate sensitivity = 2.9°C
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model
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matchsum

decrease
pCO2

increase
pCO2

estimated
steady-state

pCO2

compare to check if in steady-state

source sink

conclusions

finds the steady-
state pCO2 
for a given 

weatherability

(finds the pCO2 at which the sink equals the source)

adapted from Goddéris & Donnadieu (2017)

GEOCLIM estimates changes in steady-state pCO2 associated with 
coupled changes in silicate weathering and climatology
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pCO2

compare to check if in steady-state

source sink

(finds the pCO2 at which the sink equals the source)

adapted from Goddéris & Donnadieu (2017)

climate model: 
GFDL CM2.0 at pCO2 = 286, 572, 1144 ppm 

equilibrium climate sensitivity = 2.9°C

GEOCLIM estimates changes in steady-state pCO2 associated with 
coupled changes in silicate weathering and climatology
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UNWEATHERED
BEDROCK

REGOLITH Pr

Ep

W

χCaMg

z

0

h

undissolved
phases dissolved

solutes

z

proportion of 
primary phases (x)

0

h

0 1

xs

DynSoil 
a regolith production + weathering model

weathering was modeled 
to be a function of: 

temperature 
runoff 

topography

GEOCLIM

conclusions

Maffre et al. (2018), 
formulation based on 
Gabet & Mudd (2009) 

and West (2012)

we introduce a dependence on 
lithology
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Park et al. (in press), 
simplified from the 
Global Lithologic Map (GLiM) 
of Hartmann and Moosdorf (2012)

lithology Ca+Mg (mol/m3)

felsic 1,521

intermediate 4,759

mafic 10,317

carbonate ignored

metamorphics ???

sediments ???

mean of data 
compiled in 
EarthChem

dependent on protolith composition and 
degree of previous chemical depletion

GEOCLIM

conclusions
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poorly constrained lithologies poorly constrained model parameters (from West, 2012)

metamorphicCa+Mg sedimentCa+Mg kd kw σ krp

6 values 6 values 10 values 10 values 6 values 6 values

CO2 consumption map for one of the 
93,600 parameter combinations

compare modeled vs. measured 
CO2 consumption over watersheds

Maffre et al. (2018)

5,381 “good” parameter combinations that result in 
chemical weathering maps that closely resemble that observed in the present day

permute to get 93,600 unique combinations of these 6 parameters

CALIBRATION

conclusions
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paleogeography elsewhere on Earth is not changed

for each of the 5,381 “good” parameter combinations, run the full GEOCLIM model 
and get an estimate for steady-state pCO2

conclusions
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majority of the pCO2 decline over the past ~33.6 million years can be attributed to 
paleogeographic changes in the Southeast Asian islands

glaciation thresholds suggest pCO2 decline over the past ~33.6 million years of ~750 ppm to 280 ppm = ~470 ppm 

GEOCLIM suggests Southeast Asian island emergence caused pCO2 decline of ~700-550 ppm to 280 ppm = ~420-270 ppm
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5,381 “good" 
parameter combinations

conclusions emergence of the Southeast Asian islands 
changes steady-state pCO2 more than  

recent large igneous province eruptions

majority of the pCO2 decline over the past ~33.6 million years can be attributed to 
paleogeographic changes in the Southeast Asian islands

glaciation thresholds suggest pCO2 decline over the past ~33.6 million years of ~750 ppm to 280 ppm = ~470 ppm 

GEOCLIM suggests Southeast Asian island emergence caused pCO2 decline of ~700-550 ppm to 280 ppm = ~420-270 ppm

Park et al. (in press)
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changes in paleogeography and volcanic outgassing 
elsewhere on Earth (e.g. Himalayan uplift) would have 

affected geologic carbon sources and sinks… 

but: 

history of Southeast Asian island emergence 
coincides with Neogene cooling 

associated pCO2 change explains the majority 
of this cooling

conclusions
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conclusions

1. If we look at the past ~520 million years as a whole, do tropical arc-continent collisions coincide with times of 
glacial climate? 

2. Arc-continent collision is happening in the tropics today in the Southeast Asian islands: is this event responsible 
for cooling over the past ~15 million years? 

3. Is tropical island arc exhumation also responsible for a “snowball” glaciation ~717 million years ago?

1

2
3

hypothesis: 

tropical island arc exhumation is important for setting Earth’s long-term climate state
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Arabian-Nubian Shield 

a series of juvenile arc terranes that 
came together during the 

Neoproterozoic
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arc-proximal environment 
deposits ashes 

can be dated to very high precision

warm & shallow marine 
environment 

deposits carbonates 
records ocean chemistry

snowball glaciation

The Tambien Group is the only sedimentary 
sequence identified so far 

that leads into the Sturtian glaciation and 
hosts both carbonates and ashes 

allows us to produce a precisely time-calibrated 
record of ocean chemistry leading up to snowball 

glaciation

conclusions
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geologic maps
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principal components analysis 
carbon isotopes - δ13C

thresholds 
strontium isotopes - 87Sr/86Sr

identifying alteration in 
carbonate samples

TAMBIEN GROUP

conclusions

Park et al. (2020a)

Park et al. (2020a)



Phanerozoic

Cenozoic

Neoproterozoic

acknowledgements

introduction

Planetary cooling, 
tectonics, and 
weathering from 
1 billion years ago 
to the present

U-Pb 
chemical abrasion isotope dilution 

thermal ionization mass spectrometry 
(CA-ID-TIMS) on zircon

generating precise ages 
from ashes

TAMBIEN GROUP

conclusions

Park et al. (2020a)
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stratigraphic 
sections

CA-ID-TIMS 
ages

marine 
carbon isotope 

record

marine 
strontium isotope 

record

TAMBIEN GROUP

conclusions

Park et al. (2020a)

put it all 
together…
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Sturtian Glaciation to date

CHEMOSTRATIGRAPHY

conclusions

ocean chemistry 
record derived 

from carbonates

age constraints 
derived from ashes

Park et al. (2020a)
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conclusions
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calibrated marine isotope 
record leading into the 

Sturtian Glaciation to date

ocean chemistry 
record derived 

from carbonates

age constraints 
derived from ashes

Park et al. (2020a)
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flat

rising

falling

supercontinent breakup leads to increased hydrothermal exchange flux

supercontinent Rodinia 
breaking apart

STRONTIUM

780 Ma 750 Ma 680 Ma

Merdith et al. (2017)

850 Ma

conclusions

more Sr from juvenile rocks and/or 
hydrothermal exchange

more Sr from radiogenic rocks

Park et al. (2020a)
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flat

rising

falling

falling 87Sr/86Sr starting ~780 Ma most likely driven by 
increased weathering of juvenile rocks

STRONTIUM

conclusions

more Sr from juvenile rocks and/or 
hydrothermal exchange

more Sr from radiogenic rocks

Park et al. (2020a)
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flat

rising

falling

STRONTIUM

Gunbarrel coincides with 87Sr/86Sr 
fall ~780 Ma, but larger tropical LIP 
area peaks do not cause 87Sr/86Sr to 

fall

conclusions

Park et al. (2020a)
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STRONTIUM the only low-latitude arc 
accretion events coincide with 

87Sr/86Sr fall ~780 Ma

conclusions

tropical arc 
exhumation 

started cooling the 
planet ~780 Ma?

Park et al. (2020a)

MacLennan et al. (2020): 

low-latitude 
mountain glaciers 

at ~751 Ma?



Phanerozoic

Cenozoic

Neoproterozoic

acknowledgements

introduction

Planetary cooling, 
tectonics, and 
weathering from 
1 billion years ago 
to the present

STRONTIUM

conclusions

Park et al. (2020a)

but there are serious limitations… 

• paleolatitude is poorly constrained 
• arc-accretion database is not well 

developed
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FRANKLIN LARGE IGNEOUS PROVINCE

conclusions

Park et al. (2020a)

‘Fire and Ice’ hypothesis: enhanced 
weatherability due to the eruption of the 
Franklin LIP in the tropics initiated the 
Sturtian Snowball Earth

Franklin LIP erupts 
immediately before the 

Sturtian glaciation Goddéris et al. (2003)
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FRANKLIN LARGE IGNEOUS PROVINCE

conclusions

large area of LIPs in 
the tropics, but no 

snowball glaciation

Park et al. (2020a)

‘Fire and Ice’ hypothesis: enhanced 
weatherability due to the eruption of the 
Franklin LIP in the tropics initiated the 
Sturtian Snowball Earth

Goddéris et al. (2003)
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Kalkarindji

Kola-Dnieper CAMP

Afar

FRANKLIN LARGE IGNEOUS PROVINCE

conclusions

Park et al. (2020a)

Park et al. (2020b)

area of Franklin LIP in the tropics 
is smaller than area of 

Phanerozoic LIPs in the tropics

Goddéris et al. (2003)
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Franklin LIP eruption injects sulfate 
aerosols into the stratosphere, 
increasing albedo and cooling the 
planet?

FRANKLIN LARGE IGNEOUS PROVINCE

Macdonald & Wordsworth (2017)

conclusions

Park et al. (2020a)

‘Fire and Ice’ hypothesis: enhanced 
weatherability due to the eruption of the 
Franklin LIP in the tropics initiated the 
Sturtian Snowball Earth

Goddéris et al. (2003)
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SUMMARY

1. low-latitude arc-accretion in 
the Arabian-Nubian Shield 
starts cooling the Earth ~780 Ma

2. Franklin LIP increases planetary 
albedo and further increases 
weatherability

3. Earth plunges into a snowball 
glaciation

tropical arc-accretion was 
required to “set the stage” for 

the Sturtian Snowball Earth

conclusions

Park et al. (2020a)
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Island arc exhumation in the tropics is important for setting 
Earth’s climate state over the past 1 billion years. 

1. Arc-continent collisions in the tropics correlate well with glacial intervals 
over the past 520 million years. 

2. Arc-continent collision in the Southeast Asian islands can explain the 
majority of cooling over the past 15 million years. 

3. Arabian-Nubian Shield arc accretion may have set the stage for the Sturtian 
Snowball Earth 717 million years ago. 

Other potentially important mechanisms: 
• volcanic degassing 
• sulphide oxidation coupled to carbonate weathering 
• organic carbon burial/weathering 
• changes in weatherability due to other processes 

But the evidence so far suggests that island arc exhumation in the 
tropics is one of the most important of these for setting Earth’s 
climate state.
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1. location of preserved remnants of arc-continent collisions

Banda Arc, simplified from Charlton (1991)
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2. age of exhumation of (ultra)mafic lithologies

• collision complex includes lower Ca+Mg continental crust and overlying sediment 

• constrain age of exhumation of mafic lithologies using dates on ophiolitic detritus in syn-orogenic 
sedimentary basins

North Slope stratigraphy, 
Moore et al. (2015)

ophiolitic 
detritus
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3. paleogeographic model

• mostly Torsvik and Cocks (2012) 

• update Laurentia in the Ordovician (Swanson-Hysell and Macdonald, 2017) 

• update Asia in the Paleozoic (Domeier, 2018)

Torsvik and Cocks (2012)
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4. a record of Earth’s climate state

pCO2 compilation from Foster et al. (2017)
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5,381 “good” parameter combinations that result in 
chemical weathering maps that closely resemble that observed in the present day
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most precisely time-
calibrated marine isotope 

record leading into the 
Sturtian Glaciation to date
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flat

rising

falling

box model indicates that 
driving the falling 87Sr/86Sr 

using an increase in the 
hydrothermal exchange flux 
requires unrealistic Ca and 

Mg fluxes and reservoirs

STRONTIUM

conclusions

more Sr from juvenile rocks and/or 
hydrothermal exchange

more Sr from radiogenic rocks

Park et al. (2020a)

Park et al. (2020a), 
formulation from 
Maloof et al. (2010)
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but there are serious limitations… 

• paleolatitude is poorly constrained 
• arc-accretion database is not well 

developed

STRONTIUM

conclusions

Park et al. (2020a)

where was 
South China?

Park et al. (in prep.)


